wyrd evolution

A population essentially evolves through the accumulation of random changes in its genetic makeup over time. These genetic changes modify organisms’ phenotypes, and over time change the distribution of traits in a population. Many traits which become prevalent in a population do so because they make the population more “evolutionarily fit”- better able survive and reproduce in its environment. Darwin coined the famous term “natural selection”to describe this phenomenon, though he wasn’t aware of the complex genetic mechanisms underlying it.

Evolutionary theory is anchored on the principle that the biology of the past has shaped the diversity we see today. Though countless examples in nature substantiate the important role of natural selection in evolution, it is important to understand that natural selection itself is not a conscious force. Rather, it is it is a pattern that produces predictable outcomes. Stochastic probability tells us that, over a long enough time and with large enough populations, traits that allow organisms to produce more offspring will come to dominate a population, simply because the individuals possessing these traits will pass along more of their genes into the next generation.

Because evolution by natural selection is not a conscious force, and because it must work to improve upon what already exists in nature, evolution cannot rapidly produce superanimals that are perfectly adapted to their environments. As the French biochemist Francois Jacob once eloquently described it, evolution is a tinkerer that works to improve upon what is already there, but its creative freedom is heavily constrained by existing body plans and biochemical pathways. Moreover, natural selection works to optimize organisms, not isolated systems. A trait that may seem advantageous, such as a genetic mutation producing enhanced night vision, may be helpful for a large predator on the Savannah, but useless for a cave fish that is rarely exposed to any sunlight and must use other sensory systems to perceive its environment. The cave fish would not develop improved eyesight because the selective advantage conferred by this ability would not outweigh its energetic costs.

As this last example begins to illustrate, natural selection is often working in concert with another force known as selective constraint. When a gene, biochemical pathway, or phenotypic trait is under selective constraint, it is maintained over evolutionary time. There are many reasons that selective constraint could operate. A biochemical pathway could be so fundamental to an organisms ability to survive that any small alterations to that pathway would be lethal. A limb or sensory organ could already be well suited for its environment, or the benefits of  making any changes to it may not outweigh the costs. A single mutation event in a gene encoding an essential protein could alter the protein’s structure and make it useless.

Natural selection and selective constraint are two important paradigms for understanding evolution. They are not the entire story, but they do help us to understand how evolution produces produces change but also propagates sameness. An alien visiting earth 3 billion years ago could not have imagined that the simple life he discovered would lead to the overwhelming diversity we see today. And yet in spite of all the novelty and innovation that has appeared over evolutionary time, this diversity has drawn upon itself, reaching outwards without  breaking its ties to the past.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s