Tag Archives: carbon dioxide

enzymes in the environment

enzymes are the catalysts of life. they are the link between higher forms of biological structure- cells, organisms, ecosystems- and the physical universe. they form such links by allowing incredible reactions to occur, reactions that strip complex molecules down into simple components that our cells can harvest energy from, reactions that detoxify harmful substances, reactions that take nonliving compounds and turn them into something organic. they have ugly names. ribulose-1,5-bisphosphate carboxylase oxygenase is a name that most eyes would glaze over while reading, but what if i told you that RuBisCO (it has a nickname!) is the only thing on earth that can add electrons to carbon dioxide? if that doesn’t seem to impressive, look out your window. not a single tree, flower, blade of grass, animal or human being (or man-made structure, for that matter) would exist if RuBisCO had not evolved to turn carbon dioxide into sugars.

there is a less appreciated truth about enzymes that i find to be equally intriguing, almost poetic. enzymes not only build and maintain life, they destroy it. or, to be a bit more accurate, they recycle its components. enzymes are largely responsible for decomposing organic matter, breaking down trees and blades of grass and human beings into the tiny carbon-rich compounds that RuBisCO created. in fact, if you take a small handful of soil from your garden, you are holding billions of free floating enzymes. they have been constructed by plants and microbes and were released into the environment to acquire something that their creator needs (i hate to use the word “creator”, when writing about science, if you have a better word, please do share). most often, this is an essential nutrient or a small sugar that can be used for energy. imagine if you could take your stomach out, and send it off to wendy’s to eat a chicken sandwich for you. not the prettiest analogy, perhaps, but this is in essence this is what microbes and plants do in the soil.

while intellectually it may be somewhat interesting to imagine billions of microbial exo-stomachs scouring the earth for their lunch, why should anyone really care about enzymes in the environment? well, truth be told, very few people do. but i’m going to tell you why an increasing number of environmental scientists are taking an interest in enzymes, not only in order to understand a process, but with the growing realization that understanding how enzymes shape our planet may be essential to averting looming environmental catastrophes.

as the agents responsible for the breakdown of organic, carbon containing compounds (and this is true in soils and aquatic ecosystems), enzymes are gatekeepers. they regulate how quickly carbon is broken down and taken up anew by living organisms. if you want to think realistically about any form of carbon sequestration in soils (an idea that has exploded in popularity in the last several years), or understand how global warming is altering ecosystems and the balance of carbon and nutrients within them, you simply cannot ignore enzymes.

the fact is, much as we would like to find a way to store the huge amounts of  carbon our activities are releasing into the atmosphere back in the earth, adding carbon feeds the soil. and just as human populations increase during times of food surplus, microbial populations explode, produce more enzymes and cycle that carbon at a faster rate.

another aspect of enzyme behavior that makes global climate change scenarios even stickier is that enzymes are very, very sensitive to changes in their environment. the activity and efficiency of enzymes in the environment is closely linked to temperature, moisture, and pH conditions. my own research on soil enzymes from northeastern forests is showing that even a few degrees of temperature increase can cause a dramatic increase in the rate of the carbon-cycling reactions that these enzymes perform. droughts, on the other hand, can quickly kill demolish enzyme communities and cause carbon cycling in a system to drop off.

the behavior of enzymes in the environment, we are discovering, is far more complex and nuanced than the story i’ve outlined here. moreover, ecologists know that enzymes must be understood within a broad context. the plants, animals and environmental processes that interact to form complex ecosystems, which enzymes regulate on a very fundamental level, must be somehow integrated if we are to fully understand how these tiny reaction machines keep our earth running.

Advertisements

Acid oceans and the next 800,000 years

Have you heard the term “ocean acidification” being thrown around in the popular media recently? If you have heard a bit about this phenomenon but you’re not a climate scientist, it’s likely that you’ve been left with the impression that ocean acidification is yet another in a long list of the potentially nasty consequences of climate change. Probably something for the scientists to be concerned about, but not nearly as pressing as the melting of polar ice caps or the possibility of a twenty foot rise in sea level. However, given the invaluable ecosystem services and role in climate regulation that our oceans provide, I find it shocking that so little attention has been paid to ocean acidification, a process that we understand much more precisely than the elusive changes in global climate associated with rising CO2 levels.

Ocean water is slightly basic, just around pH 8 (the water we drink is generally neutral or slightly acidic, around pH 7). When CO2 from the atmosphere dissolves at the ocean surface, it reacts with water to form a balance of different “carbonate species”. The most abundant form that this dissolved CO2 converts into is bicarbonate, HCO−3. The prevalence of bicarbonate in oceans is due to their basicity. However, as more CO2 dissolves in water, the balance of carbonate species shifts. Bicarbonate begins losing a hydrogen ion and becoming carbonate, CO-3. This results in a release of free hydrogen ions (H+) into the water, which increase its acidity.

If you’re not a chemist, why would you be remotely interested in the balance of carbonate and hydrogen in the water? The reason ocean pH is so important is that all organisms and biological processes that occur in the ocean are finely attuned to changes in water chemistry, much as we can feel the slightest changes in atmospheric chemistry  that cause the difference between a hot sticky day and a hot dry day. However, the acidification of oceans isn’t just a comfort problem for marine organisms- a slight attenuation of ocean pH can represent a lethal environmental change.

Many marine organisms produce exoskeletons made of calcium carbonate. Calcium carbonate, molecular formula CaCO3,  forms when a calcium atom and a carbonate ion bond together and precipitate out of solution. This is called calcification. It is essential to the survival of corals, a variety of shelled invertebrates, and single celled planktonic organisms that play an essential role in ocean photosynthesis and nutrient cycling. However, an increased abundance of H+ ions in the water interferes with the formation of calcium carbonate. In fact, calcium carbonate formation is so sensitive to pH that a fraction of a pH unit can make the difference between a habitable and a lethal environment.

So, a summary of why we should be worried about CO2 in the oceans: Increased CO2 alters the balance of carbonate in ocean water and causes the release of protons, which by definition increases acidity. This in turn prevents the formation of calcium carbonate, which is essential to the survival of a variety of marine organisms.

What kind of damage are we looking at if calcium carbonate stops forming? One of the largest challenge climate scientists face is giving accurate predictions of the ramifications of climate change (the other is communicating these predictions and their significance to the public, a task which has thus far been a resounding failure). The most useful resource we have in making these predictions is the past. Climates have been highly variable over geologic history, and the earth has experienced periods of much higher CO2 levels and correspondingly warmer climates. With regard to oceans, we know ocean CO2 levels increased dramatically about 251 million years ago, at the end of an era known as the Permian. The end of the Permian also marks the largest extinction event in Earth’s history, with up to 96% of all marine species disappearing. There is still much debate as to the cause of the Permian extinction, but there is growing evidence that rapid acidification may have been a primary driver in the oceans. But how fast is ocean pH dropping today compared to past acidification events?  William Howard of the Antarctic Climate and Ecosystems Cooperative Research Center in Hobart, Tasmania stated this past July that  “the current rate of ocean acidification is about a hundred times faster than the most rapid events” in the geologic past.

Maybe this is a little dramatic. But whether or not we believe that acidification caused a huge extinction event in the past, the fact remains that the functioning of many marine ecosystems today is entirely dependent on the ability of a select group of organisms to precipitate calcium carbonate. Coral reefs provide the a habitat for thousands of other species, but without their calcareous exoskeletons, their soft tissues would not be able to survive. Calcareous phytoplankton nourish huge regions of open ocean due to their ability to produce sugars from sunlight. Many human populations rely on calcifying shellfish as a valuable food and economic resource.

Globally, ocean pH has already dropped about 0.1 unit. A drop of another 0.3 to 0.5 pH units is predicted by 2100. In most surface oceans, this level of pH change will make the precipitation of solid calcium carbonate energetically impossible. In short, we are on a trajectory for change that we may only have a small window of opportunity to alter, if our chance has not already past. If we are worried about economic costs associated with dramatically reducing our CO2 emissions today, it might be valuable in our cost-benefit analysis to consider the reduction in quality of life our children will face in a world whose oceans are biologically impoverished.