Tag Archives: carbon storage

Applying equations to forests- carbon storage across environmental gradients in northeastern Puerto Rico

If you’ve ever read about carbon storage or sequestration (and if you’ve read my blog before, there’s a good chance you have), have you ever wondered how scientists come up with the numbers they love to throw around? How do we “know” that there are 684-724 petagrams of carbon to a depth of 30 cm in all the soils across the whole wide world? How could anyone possibly know that?

We don’t. And we can’t. But there are those crazy enough to try, and trying essentially boils down to  sampling, sampling, sampling, then a whole lot of extrapolating. If you imagine a landscape in which there is a continuous but highly variable distribution of carbon, the only way we’re gong to get any sort of meaningful estimate of the total is to dig a lot of holes. The points you see below represent a lot of holes that I actually helped dig! (I’m one of those crazies). I’ve thrown them up over this topographical surface to give you a sense of just how variable carbon can be across space.

Rather than subject you to a discussion of a ecosystem carbon storage, I’d like to share some pretty pictures I’ve been putting together. I’m attempting to create a model for carbon storage across a roughly 10 km area of forest in northeastern Puerto Rico that is underlain by two bedrock types, contains three distinct forests dominated by different tree species, and has broad gradients in temperature and rainfall across the topographically varied landscape.

Bluer regions represent areas of greater carbon storage while yellower regions store less carbon. Essentially I’ve created an image made of a series of pixels -here, the resolution is coarse enough that you can distinguish individual pixels around the edges. For each pixel, a predicted carbon value has been calculated from a very simple equation that takes bedrock, forest type and elevation into account.

Breaking it down by forest type…

 

 

That’s all for now, hopefully I’ll have more and more interesting pictures to show in the future.

Earthworms play key role in regulating carbon storage in tropical ecosystems

A principle frontier in our understanding of global carbon budgets is tropical forests, on which research is historically scarce. At temperate and high latitudes, a warmer climate is predicted to increase the rate of decomposition and soil carbon turnover, resulting in a positive feedback on atmospheric carbon as CO2 is released from soils at increasing rates. A better understanding of the mechanisms regulating tropical carbon storage is needed in order to develop a holistic picture of global carbon cycling and feedbacks due to climate change.

Earthworms are important regulators of many ecological properties of soils. Their burrowing activity increases soil pore space and contributes to soil structure and drainage. Most importantly, earthworms can digest a huge quantity of dead and partially decomposed plant material. This digestion causes chemical transformations that ultimately produce nutrient-rich soil organic matter, or SOM. SOM helps ensure soil fertility, and contributes to numerous physical and chemical soil properties such as soil structure, porosity, water retention, and the capacity of soils to buffer pH changes. SOM’s aggregate structure causes it to have high water stability. This is an essential property in tropical forests, which have the highest rainfall levels of any biome on Earth.

SOM produced by earthworms is also rich in both carbon and nitrogen. A detailed biochemical and molecular analysis of earthworm casts suggests that these creatures may in fact play a key role in controlling tropical carbon storage.

Casts are clumps of digested organic matter excreted by earthworms that aggregate into large and distinctive structures. Researchers working in the rain forest neighboring the Dong Cao village in Northeast Vietnam studied the effect of cast production by Amynthas Khami on soil C storge. A. Khami is a species of tropical earthworm that can grow up to 50 cm long and produce tower-like casts. The researchers first used a “simulated rainfall” experiment to determine the relative stability of casts versus control soils. They then measured total carbon content, lignin and mineral-bound SOM content of casts and control soils.

An earthworm cast produced by A. Khami, a large tropical species found in Northeast Vietnam.

The study found striking differences in the chemical composition of earthworm casts versus control soils that ubiquitously indicate higher carbon storage in casts. Casts are more structurally stable and can withstand at least twice as long a rainfall event as control soils without compromising their structural integrity. They are enriched in carbon compared with controls, and particularly in carbon compounds such as lignin that have a high “carbon storage” potential. Lignin, a primary constituent of woody plant tissue, is a complex and heterogeneous molecule that is both carbon-rich and difficult for microbes to decompose. Earthworms probably excrete high quantities of lignin after obtaining the more digestible carbon sources from the roots and leaves that they eat. Finally, high levels of mineral associated-SOM were found in casts. Soil minerals bind to organic matter through electrostatic interactions, and in doing so make it unavailable for decomposers.

Though it well known that earthworm digestion initially speeds up decomposition, this new study suggests that casts may in fact contribute to long-term carbon stabilization. In tropical soils, which tend to cycle carbon quite rapidly, this mechanism should not go unappreciated. Future tropical land-use decisions may want to account for the welfare of this often-unappreciated soil organism.

Hong et al. 2011. How do earthworms influence organic matter quantity and quality in tropical soils? Soil Biology and Biochemistry 43: 223-230.

urban jungles

a study published recently in Global Change Biology found that rainforests have been displaced as ecosystems that store the most carbon- by cities! cities store more carbon in their trees, buildings and dirt, than the densest and most productive tropical rainforests.

according to researcher Galina Churikina, who led the study, US cities store about 20 billion tons of organic carbon. most of this carbon is held in soils, though a sizable fraction is also contained within buildings constructed with wood. ironically, the key to city’s’ remarkable capacity to store carbon seems to be their artificial nature. buildings and asphalt “bury” soils, locking away carbon that was once part of a dynamic forest, grassland, or other natural ecosystem.

Shanghai, one of the world's largest cities, is an enormous carbon sink!

this is not to discount the importance of urban trees in both storing carbon and providing numerous ecosystem services. trees and other urban plants ameliorate temperatures, providing a cooling effect in summers that reduces the need for air conditioning. trees also directly take up CO2 emitted from cars, reducing the amount of pollution that enters the atmosphere from cities in the first place.

Urban trees such as those in Central Park, NYC, keep buildings cool, capture CO2, reduce stormwater runoff, and improve quality of life.

enzymes in the environment

enzymes are the catalysts of life. they are the link between higher forms of biological structure- cells, organisms, ecosystems- and the physical universe. they form such links by allowing incredible reactions to occur, reactions that strip complex molecules down into simple components that our cells can harvest energy from, reactions that detoxify harmful substances, reactions that take nonliving compounds and turn them into something organic. they have ugly names. ribulose-1,5-bisphosphate carboxylase oxygenase is a name that most eyes would glaze over while reading, but what if i told you that RuBisCO (it has a nickname!) is the only thing on earth that can add electrons to carbon dioxide? if that doesn’t seem to impressive, look out your window. not a single tree, flower, blade of grass, animal or human being (or man-made structure, for that matter) would exist if RuBisCO had not evolved to turn carbon dioxide into sugars.

there is a less appreciated truth about enzymes that i find to be equally intriguing, almost poetic. enzymes not only build and maintain life, they destroy it. or, to be a bit more accurate, they recycle its components. enzymes are largely responsible for decomposing organic matter, breaking down trees and blades of grass and human beings into the tiny carbon-rich compounds that RuBisCO created. in fact, if you take a small handful of soil from your garden, you are holding billions of free floating enzymes. they have been constructed by plants and microbes and were released into the environment to acquire something that their creator needs (i hate to use the word “creator”, when writing about science, if you have a better word, please do share). most often, this is an essential nutrient or a small sugar that can be used for energy. imagine if you could take your stomach out, and send it off to wendy’s to eat a chicken sandwich for you. not the prettiest analogy, perhaps, but this is in essence this is what microbes and plants do in the soil.

while intellectually it may be somewhat interesting to imagine billions of microbial exo-stomachs scouring the earth for their lunch, why should anyone really care about enzymes in the environment? well, truth be told, very few people do. but i’m going to tell you why an increasing number of environmental scientists are taking an interest in enzymes, not only in order to understand a process, but with the growing realization that understanding how enzymes shape our planet may be essential to averting looming environmental catastrophes.

as the agents responsible for the breakdown of organic, carbon containing compounds (and this is true in soils and aquatic ecosystems), enzymes are gatekeepers. they regulate how quickly carbon is broken down and taken up anew by living organisms. if you want to think realistically about any form of carbon sequestration in soils (an idea that has exploded in popularity in the last several years), or understand how global warming is altering ecosystems and the balance of carbon and nutrients within them, you simply cannot ignore enzymes.

the fact is, much as we would like to find a way to store the huge amounts of  carbon our activities are releasing into the atmosphere back in the earth, adding carbon feeds the soil. and just as human populations increase during times of food surplus, microbial populations explode, produce more enzymes and cycle that carbon at a faster rate.

another aspect of enzyme behavior that makes global climate change scenarios even stickier is that enzymes are very, very sensitive to changes in their environment. the activity and efficiency of enzymes in the environment is closely linked to temperature, moisture, and pH conditions. my own research on soil enzymes from northeastern forests is showing that even a few degrees of temperature increase can cause a dramatic increase in the rate of the carbon-cycling reactions that these enzymes perform. droughts, on the other hand, can quickly kill demolish enzyme communities and cause carbon cycling in a system to drop off.

the behavior of enzymes in the environment, we are discovering, is far more complex and nuanced than the story i’ve outlined here. moreover, ecologists know that enzymes must be understood within a broad context. the plants, animals and environmental processes that interact to form complex ecosystems, which enzymes regulate on a very fundamental level, must be somehow integrated if we are to fully understand how these tiny reaction machines keep our earth running.