Tag Archives: global climate change

Don’t treat soil like dirt!

Check out my new blog here

Soil is a precious resource, yet most of us pay little attention to the stuff under our feet.  It is the medium in which we grow our food and the foundation on which we build our cities. Soils filter our water, detoxify our pollutants, decompose our waste and hold vast reserves of the nutrients required for life. Soils are also fragile, taking thousands to million of years to develop but destroyed in minutes by human development.

For the past three years, myself and my fellow soil enthusiast Aurora have spent our Saturdays in December showing kids how awesome soil and the microbes that inhabit it actually are. We’ve developed a number of soil and microbiology activities to teach kids of all ages what soil actually is, who lives in it, and why we should value it. The take-home message? Don’t treat soil like dirt! Human beings (and nearly ever other species on earth) depend on soil for our very survival.

Here are some highlights from the last two weeks of the workshop:

Shahada_microscope
Checking out some protozoa under the microscope!
Making a hypothesis before conducting an experiment!
Making a hypothesis before conducting an experiment!
MAKING SOIL! This is always a favorite. Want to make soil at home with your kids? Check out my homebrew recipe below...
MAKING SOIL! This is always a favorite. Want to make soil at home with your kids? Check out my homebrew recipe below…
Probably the coolest thing I've ever made in photoshop.
Probably the coolest thing I’ve ever made in photoshop.

We are even participating in an international, crowd-sourced science experiment known as the Tea Bag Index experiment to measure rates of decomposition in different soil types! This is a fun and easy experiment you can do in your backyard. All you need is a few teabags and a scale.  Decomposition, the breakdown of once-living organic matter and conversion into soil organic matter, is an important step in the global carbon cycle that is driven primarily by soil microorganisms. Ultimately, decomposed carbon is respired back to the atmosphere as carbon dioxide. Scientists are currently trying to understand how global climate change will affect decomposition and the microbial “respiration” of CO2 from soils. Projects such as the Tea Bag Index experiment provide scientists with valuable data that can be used to inform predictions about changes to the global carbon cycle. For more information on the Tea Bag Index experiment check out the website:

http://decolab.org/tbi/concept.html

Or click here to access the protocol and get involved directly!

http://decolab.org/tbi/protocol.html

Most importantly, our workshop strives to underscore the importance of soils in our everyday lives.  Kids (and parents) often come unsure of what exactly soil is or why it should matter to them, and often enjoy the experience so much that they return week after week.

Live in the Philly area and got kids? Check us out, every Saturday for the rest of the month!

And since I can’t seem to stop geeking out about this stuff, here are some more cool resources to check out on soil science education:

USDA NRCS Healthy Soil Fact Sheets

Advertisements

Carbon sequestration in soils: sources, sinks and pitfalls

When we talk about “sequestering” carbon in the soil to mitigate anthropogenic climate change, what are we really saying as scientists, and what is the public getting from it?  And perhaps even more importantly, what implicit assumptions are we as scientists making that may affect the validity of the widely held belief that increased C storage in soils is a good thing, and can offset our CO2 emissions?

In a recent soil carbon series in the European Journal of Soil Science, one review paper attempts to address these issues. “Carbon sequestration” has become a popular idea among policy makers and scientists alike. As anyone who keeps up on ecosystem science literature will know, C sequestration has also become an explicit motivation for numerous studies of soil and ecosystem properties.

Current best estimates claim that worldwide, soils store 684-720 Pg of C within the upper 30 cm, and 1462-1548 Pg to a depth of 1m. (For anyone not familiar with these terms, 1Pg = 1×10ˆ15 gram). The upper 30% of the soil profile to 1m clearly stores a disproportionate amount of C; this ecologists know to be the zone where continuous inputs from roots and organic matter replenish C. To put these numbers in an ecosystem context, the amount of C stored globally in soils to 30cm is twice the amount  of C stored as CO2 in the atmosphere and three times the amount of C stored in above ground vegetation. Clearly, soils represent a huge pool in global C budgets and should be managed with the knowledge that changes may represent a powerful feedback on the global C cycle. This vast storage potential is what has popularized the idea of sequestering even more C in soils and has spurred a myriad of different research approaches, from ecosystem-scale reforestation efforts to molecular studies of C-mineral binding interactions.

Given the amount of hope that has already been invested in this powerful idea, it is important for scientists interested in soil C to keep several caveats in mind when planning and conducting their research, and when communicating that research to a broader audience at a science or policy conference.

Caveat #1) Carbon sequestration does not necessarily mean climate change mitigation.

Increasing the amount of C stored in a particular ecosystem’s soil does not by default decrease the amount of CO2 released to the atmosphere. This is partially an issue of scale. If policy makers choose to set aside a certain amount of pasture land for reforestation (with the assumption that this will increase the net C storage in these systems), it is often the case that new land will have to be cleared somewhere else to compensate for the lost agricultural production.  The clearest way around this problem is to be selective in land use changes: land that is more fertile should be exploited for farming, and land that is less fertile should be reforested to boost C storage. However, an increasing global population poses obvious constraints to this line of reasoning. Ultimately, the fact remains that in the upcoming decades, we will need to boost our agricultural yields to meet global demand, and furthermore, climate change is predicted to decrease the fertility of some of the world’s most productive regions.

Moreover, allowing land to go back to its “natural” state does not necessarily lead to a net accumulation of C. A forest respires far more CO2 per acre than a wheat field. Due to the high water demands of forests relative to crops, it can sometimes be the case that trees dry up otherwise inundated subsurface soils, and in doing so create a soil environment that accelerates the decomposition of C.  One must have a refined understanding of the sources and sinks of CO2 in any particular ecosystem to claim that it will or will not “sequester” C.

Finally, management changes leading to increased C storage may increase or decrease the flux of other greenhouse gases, most notably N2O and methane. Given that these gases have 298 and 25 times the global warming potential of CO2, respectively, they are not a trivial consideration. Forests often hold less nitrogen than pastures (due to the different C:N demands of woody vs. non-woody tissue), and consequently release more N2O through the microbial process known as denitrification.

Caveat #2) The amount of carbon that can be locked up in soil in finite

Our understanding of how C is actually “stabilized” in soil on a molecular scale is still evolving. Scientists are using powerful technologies such as x-ray crystallography to understand in detail the chemical interactions between soil minerals and carbon-rich compounds that cause C to be tightly bound and inaccessible to microbes. As a general rule, the more mineral surface area available for C binding, the more tightly C is bound. In subsurface soils lower levels of C mean higher (mineral surface area: C) ratios and thus tighter binding of the C that is present.

However, mineral stabilization has its limits. Laboratory experiments are finding that as C is added to soils, “steady states” are sequentially reached. Careful manipulation of the  chemical and thermodynamic parameters of a soil may bump that soil from a lower steady state to a higher one, but whether such techniques can be applied on a whole-ecosystem scale remains to be seen.

To repeat, caveat #2 is that the amount of carbon that can be locked up in soil is finite, which leads to caveat #3.
At present, the amount of CO2 we put in the atmosphere does not seem to be.

Powlson et al. 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science 62: 42-55.

enzymes in the environment

enzymes are the catalysts of life. they are the link between higher forms of biological structure- cells, organisms, ecosystems- and the physical universe. they form such links by allowing incredible reactions to occur, reactions that strip complex molecules down into simple components that our cells can harvest energy from, reactions that detoxify harmful substances, reactions that take nonliving compounds and turn them into something organic. they have ugly names. ribulose-1,5-bisphosphate carboxylase oxygenase is a name that most eyes would glaze over while reading, but what if i told you that RuBisCO (it has a nickname!) is the only thing on earth that can add electrons to carbon dioxide? if that doesn’t seem to impressive, look out your window. not a single tree, flower, blade of grass, animal or human being (or man-made structure, for that matter) would exist if RuBisCO had not evolved to turn carbon dioxide into sugars.

there is a less appreciated truth about enzymes that i find to be equally intriguing, almost poetic. enzymes not only build and maintain life, they destroy it. or, to be a bit more accurate, they recycle its components. enzymes are largely responsible for decomposing organic matter, breaking down trees and blades of grass and human beings into the tiny carbon-rich compounds that RuBisCO created. in fact, if you take a small handful of soil from your garden, you are holding billions of free floating enzymes. they have been constructed by plants and microbes and were released into the environment to acquire something that their creator needs (i hate to use the word “creator”, when writing about science, if you have a better word, please do share). most often, this is an essential nutrient or a small sugar that can be used for energy. imagine if you could take your stomach out, and send it off to wendy’s to eat a chicken sandwich for you. not the prettiest analogy, perhaps, but this is in essence this is what microbes and plants do in the soil.

while intellectually it may be somewhat interesting to imagine billions of microbial exo-stomachs scouring the earth for their lunch, why should anyone really care about enzymes in the environment? well, truth be told, very few people do. but i’m going to tell you why an increasing number of environmental scientists are taking an interest in enzymes, not only in order to understand a process, but with the growing realization that understanding how enzymes shape our planet may be essential to averting looming environmental catastrophes.

as the agents responsible for the breakdown of organic, carbon containing compounds (and this is true in soils and aquatic ecosystems), enzymes are gatekeepers. they regulate how quickly carbon is broken down and taken up anew by living organisms. if you want to think realistically about any form of carbon sequestration in soils (an idea that has exploded in popularity in the last several years), or understand how global warming is altering ecosystems and the balance of carbon and nutrients within them, you simply cannot ignore enzymes.

the fact is, much as we would like to find a way to store the huge amounts of  carbon our activities are releasing into the atmosphere back in the earth, adding carbon feeds the soil. and just as human populations increase during times of food surplus, microbial populations explode, produce more enzymes and cycle that carbon at a faster rate.

another aspect of enzyme behavior that makes global climate change scenarios even stickier is that enzymes are very, very sensitive to changes in their environment. the activity and efficiency of enzymes in the environment is closely linked to temperature, moisture, and pH conditions. my own research on soil enzymes from northeastern forests is showing that even a few degrees of temperature increase can cause a dramatic increase in the rate of the carbon-cycling reactions that these enzymes perform. droughts, on the other hand, can quickly kill demolish enzyme communities and cause carbon cycling in a system to drop off.

the behavior of enzymes in the environment, we are discovering, is far more complex and nuanced than the story i’ve outlined here. moreover, ecologists know that enzymes must be understood within a broad context. the plants, animals and environmental processes that interact to form complex ecosystems, which enzymes regulate on a very fundamental level, must be somehow integrated if we are to fully understand how these tiny reaction machines keep our earth running.