Tag Archives: root

Protozoa drive growth enhancing hormone release in the rhizosphere: where biochemistry meets ecology

Though numbering far fewer in the soil than the bacteria they prey on, protozoa are an indispensible link in the transfer of nutrients through the food web that drives forest productivity. These single celled, eukaryotic “bactivores” concentrate themselves in regions of high bacterial activity, notably in the vicinity of plant roots. I’ve previously discussed the “microbial loop theory”, a paradigm for understanding plant nutrient acquisition in terms of the interactions between root exudates, protozoan predators and bacterial prey. To summarize briefly, plant roots exude sugary compounds to “prime” the surrounding soil, making it a highly suitable habitat for bacterial populations. Protozoans naturally move in, too. As quickly as bacteria decompose organic matter to recycle nutrients for their own growth and metabolism, protozoans eat bacteria and excrete those very same nutrients in a form readily available for plants. This “microbial loop” of nutrients is essentially an ecological fertilization system built on a very simple predator-prey model.
Given the advantage plant obtain by maintaining a large and healthy microbial (bacterial + protozoan) community, what strategies can plants employ to ensure that they are supporting the largest and best community possible? (Note that best, from the plants perspective, means the community that mineralizes the most plant-available nutrients in the rhizosphere.) A first obvious strategy for a growing plant would be to release more food- to exude more sugary carbon from its fine root tips. But another, possibly more important step precedes this, and it has to do with root architecture.
Most plants begin their foray into the earth as a seedling, by sending a long, primary taproot straight down like a sledgehammer. Lateral roots begin branching off this main taproot slightly later, and from these lateral roots networks of fine roots, or root hairs, spread out like tiny fingers to penetrate the smallest nooks and crannies in the soil matrix. It is these root hairs which become the site of almost all nutrient and water acquisition and can end up covering an enormous surface area in a mature plant. And it is in the narrow band around these root hairs known as the rhizosphere that a microbial food web has evolved to provide those nutrients.
But plants don’t just grow root hairs everywhere. That would be a waste of energy. Root growth is highly plastic and sensitive to environmental parameters such as soil moisture and nutrient availability. If, for instance, a calcium deposit exists several inches from a primary lateral root, root hairs will likely develop in the direction of that deposit to access as many nutrients as possible. How can plants regulate their growth so precisely in order to ensure themselves the best chance of survival?
It turns out that a complex set of biochemical pathways drive plant growth, and that these pathways can be switched “on” or “off” according to the presence or absence of growth hormones. Auxins are a class of hormones that are particularly important in mediating the growth of plastic stem cells in response to the environment. They are largely responsible for phototropism, the phenomenom that anyone with a windowsill plant has observed, that plants tend to concentrate their above-ground growth in the direction of the most sunlight. Belowground, auxins are largely responsible for root branching and the selective production of root hairs.
At this point you might be wondering why I’ve diverged from my original topic (the microbial loop) to discussing the biochemistry of plant growth. Well, recent research suggests that these two subjects may be even more intricately linked than previously imagined. Growth hormones such as auxins are responsible for the production of fine roots, and by the same token responsible for the maintenance of a rhizosphere in which microbial communities thrive. Though they are hardly aware of it, microbes desperately need auxins to ensure the continued maintenance of the roots they depend upon as a primary food source. A recent study conducted by rhizosphere ecologists (there aren’t very many of them, in case you were wondering) in Germany has found that protozoa selectively “graze” on certain bacteria in the rhizosphere while largely ignoring others. Which bacteria do they choose to ignore? The ones that produce auxins that promote root growth. By selectively removing amoebae, a key bacterial predator, from experimental plant roots, the researchers found a marked decrease in plant auxin concentrations compared to treatments that contained amoebae. Soils with amoebae predators maintained plants with higher auxin concentrations and increased root branching.
It is becoming clear that the interspecies interactions that plants, protozoa and bacteria all depend on may be far more nuanced than we previously understood. Future research to characterize the specific players in this complex web would allow scientists to develop a more holistic picture of exactly who and what is driving plant growth and ecosystem nutrient cycling.
Krome et al. 2010. Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant Soil: 328, 191-201.

In an unpredictable environment, trees network for stability

In the highly variable ridge, slope and valley mosaic that forms the Luquillo Mountains of northeastern Puerto Rico, Dacroydes excelsa, commonly known as Tabnuco, dominates the landscape. Though tropical forests are generally quite diverse and seen as ideal environments for plant growth, life in this rainforest can actually be quite challenging. Powerful hurricanes pass through the Caribbean annually and hit the Puerto Rican mainland every few years. Large swatches of the Luquillo forest were flattened several years back when hurricane Hugo struck in 1989.  Aside from directly damaging or wiping out forest stands, hurricanes cause landslides that severly erode the already shallow, nutrient depauperate soils.

On steep, harsh slopes that experience such frequent disturbance, what allows one tree species to gain a competitive advantage over the hundreds of others struggling to survive? Rather than compete fiercely for limited resources only to be at the mercy of the next devastating hurricane, Tabunuco trees have adopted an alternative strategy- cooperation and resource sharing through root grafting.

Root grafting, the joining of neighboring tree roots to produce a network, is a phenomenon that scientists have been aware of for decades, though the extent of its occurrence and the benefits that it provides trees are largely unknown. In Tabunuco forests, however, root grafting is widespread and many of its benefits obvious.

Tabunuco trees grow in dense stands and will graft roots with neighboring trees as they mature, forming unions that comprise anywhere from two to over a dozen trees. A clear advantage of this strategy in an environment that experiences powerful storms is structural stability. Trees that have entered unions increase their base of support and are less likely to be uprooted during a wind event or landslide. In increasing their wind-firmness, individual trees boost their survival chances during a storm. Fewer uprooting events also reduces the probability of a major landslide and helps ensure the retention of the surface organic matter that contains most of the forest’s available nutrients.

Root networks can also improve soil conditions during the off-season. Densely packed surface roots form “organic benches” which trap leaves and other decaying plant matter rather than allowing these important nutrient sources be washed downslope. Roots aerate the soil, facilitating decomposition and nutrient flow. They also “prime” the surrounding soil for productivity by releasing sugary compounds that stimulate beneficial microbial activity (the interaction between plants and microbes in the root zone known as the “rhizosphere” is another fascinating topic entirely, which I will do attempt to do justice to in the future).

Scientists are now discovering previously undetectable advantages of Tabunuco grafting that underscore the high degree of sophistication and evolutionary purpose in the development of these networks. It is now known that root networks can actually serve as conduits for the transfer of carbon and essential nutrients between trees. This can provide an immense competitive advantage over non-networked trees. Tabunuco trees that receive the most sunlight and produce the most carbon through photosynthesis can transfer carbon to neighboring Tabunucos to ensure the long-term health and survival of the community. Individuals of less common species, such as the Caribbean palm and Colorado tree are excluded from Tabunuco networks and must compete for growth given only the resources available in the vicinity of their roots.

Though in Tabunucos root grafting precludes the need for inter-tree competition, it is theoretically possible that trees could use grafting for more selfish purposes. Ecologists have speculated whether trees can gain a competitive advantage over their neighbors by leeching a neighbor’s nutrients, much as the fungal organisms that associate symbiotically with plant roots can become greedy and actually sap nutrients from their host under stressful conditions. Root networks may even serve as a conduit for disease or herbicide transfer, allowing trees that produce or tolerate a harmful compound to efficiently clear out their competitors.

Citation-
Basnet, K., F.N. Scatena, G.E. Likens, and A.E. Lugo. 1992. Ecological consequences of root grafting in tabonuco (Dacryodes excelsa) trees in the Luquillo Experimental Forest, Puerto Rico. Biotropica 25:28-35.